Table 4. The estimation result of a binary logit model for visit to urban park and green area as a dependent variable.

Variable Basic model Interaction model (1) Interaction model (2)
COVID-19 outbreak −1.337*** −0.961*** −0.738**
Age (base=20s)
          30s (30~39) 0.159 0.297 0.159
          40s (40~49) 0.579*** 1.126*** 0.578***
          50s (50~59) 0.992*** 1.282*** 0.994***
          60s (60~69) 0.976*** 1.100*** 0.977***
Age*COVID-19
          30s (30~39) -0.264
          40s (40~49) -0.901***
          50s (50~59) -0.499
          60s (60~69) -0.240
Gender (male=1) 0.064 0.066 0.064
Children (with children=1) −0.134 −0.125 −0.132
Job (office job=1) 0.054 0.060 0.056
Education (base=not enrolled in university)
          Enrolled in or graduated from university 0.478*** 0.480*** 0.477***
          Enrolled in or graduated from graduate school 0.525** 0.534** 0.528**
Income (base=under 2 million KRW)
          2~4 million KRW 0.427** 0.420** 0.430**
          4~6 million KRW 0.483*** 0.473*** 0.484***
          6~8 million KRW 0.621*** 0.613*** 0.622***
          More than 8 million KRW 0.289 0.280 0.291
Residential area (in Seoul Metropolitan area=1) 0.185* 0.185* 0.186*
Importance of forest (base=not important)
          Slightly important 0.942*** 0.938*** 1.081***
          Important 1.597*** 1.591*** 2.041***
          Very important 1.730*** 1.726*** 2.068***
Importance of forest*COVID-19
          Slightly important -0.378
          Important -0.877**
          Very important -0.716**
Constant −1.245*** −1.446 −1.508***
Obs. 2000 2000 2000
LR chi2 (prob > chi2) 361.48 (0.000) 369.56 (0.000) 368.40 (0.000)
Pseudo R2 0.145 0.148 0.148
Log likelihood −1067.665 −1063.625 −1064.207
Note: p<0.1*, p<0.05**, p<0.01***