Table 4. General forms of anamorphic and polymorphic projection equations.

Model types Model names Equation forms
Anamorphic Schumacher Y 2 = Y 1 exp ( β ( 1 / T 2 γ 1 / T 2 γ ) )
Hossfeld Y 2 = 1 / ( ( 1 / Y 1 ) β ( 1 / T 2 γ 1 / T 1 γ ) )
Chapman-Richards Y2 = Y1((1 − exp(−βT1))/(1−exp(−βT2)))γ
Gompertz Y2 = Y1exp(−β (exp(γT2)−exp(γT1)))
Polymorphic Schumacher Y2 = exp(ln(Y1)(T1/T2)β + α(1 − (T1/T2)β))
Hossfeld Y2 = 1/((1 − Y1)(T1T2)γ + (1/α)(1 − (T1/T2)γ))
Chapman-Richards Y 2 = ( α / γ ) [ 1 / 1 β ) ( 1 ( 1 ( γ α ) Y 1 ( 1 β ) ) ) ( T 2 T 1 ) [ γ ( 1 β ) ] ) ( 1 / ( 1 β )
Gompertz Y 2 = exp ( ln ( Y 1 ) exp ( β ( T 2 T 1 ) + γ ( T 2 2 T 1 2 ) ) + α ( 1 exp ( β ( T 2 T 1 ) + γ ( T 2 2 T 1 2 ) ) ) )
Y1 = dimeter and height of trees at age T1
Y2 = dimeter and height of trees at age T2
exp = exponential function
ln = natural logarithm, and
α,β,γ are coefficients to be estimated.