Table 4. Comparison of the predictive performance of four machine learning models on testing data.
Model | XGBoost | Boosted Tree | Bootstrap Forest | Neural Networks | 4 models mean | PLS-DA |
Full model | No. of variables | 530 | 530 | 530 | 530 | - | 530 |
Accuracy | 0.9688 | 0.9201 | 0.8889 | 0.8125 | 0.8976 | 0.7326 |
Misclassification | 0.0313 | 0.0799 | 0.1111 | 0.1875 | 0.1025 | 0.2674 |
AUC | 0.9661 | 0.9176 | 0.8801 | 0.8086 | 0.8931 | 0.7297 |
Sensitivity | 0.9877 | 0.9383 | 0.9506 | 0.8395 | 0.9290 | 0.7531 |
Specificity | 0.9444 | 0.8968 | 0.8095 | 0.7778 | 0.8571 | 0.7063 |
Precision | 0.9581 | 0.9212 | 0.8652 | 0.8293 | 0.8934 | 0.7673 |
Reduced model | No. of variables | 28 | 33 | 15 | 195 | - | 311 |
Accuracy | 0.9722 | 0.9653 | 0.8576 | 0.8299 | 0.9063 | 0.7431 |
Misclassification | 0.0278 | 0.0347 | 0.1424 | 0.1701 | 0.0938 | 0.2569 |
AUC | 0.9735 | 0.9647 | 0.8514 | 0.8258 | 0.9039 | 0.7381 |
Sensitivity | 0.9630 | 0.9691 | 0.9012 | 0.8580 | 0.9228 | 0.7778 |
Specificity | 0.9841 | 0.9603 | 0.8016 | 0.7937 | 0.8849 | 0.6984 |
Precision | 0.9873 | 0.9691 | 0.8538 | 0.8424 | 0.9132 | 0.7683 |