Table 4. Comparison of the predictive performance of four machine learning models on testing data.

Model XGBoost Boosted Tree Bootstrap Forest Neural Networks 4 models mean PLS-DA
Full model No. of variables 530 530 530 530 - 530
Accuracy 0.9688 0.9201 0.8889 0.8125 0.8976 0.7326
Misclassification 0.0313 0.0799 0.1111 0.1875 0.1025 0.2674
AUC 0.9661 0.9176 0.8801 0.8086 0.8931 0.7297
Sensitivity 0.9877 0.9383 0.9506 0.8395 0.9290 0.7531
Specificity 0.9444 0.8968 0.8095 0.7778 0.8571 0.7063
Precision 0.9581 0.9212 0.8652 0.8293 0.8934 0.7673
Reduced model No. of variables 28 33 15 195 - 311
Accuracy 0.9722 0.9653 0.8576 0.8299 0.9063 0.7431
Misclassification 0.0278 0.0347 0.1424 0.1701 0.0938 0.2569
AUC 0.9735 0.9647 0.8514 0.8258 0.9039 0.7381
Sensitivity 0.9630 0.9691 0.9012 0.8580 0.9228 0.7778
Specificity 0.9841 0.9603 0.8016 0.7937 0.8849 0.6984
Precision 0.9873 0.9691 0.8538 0.8424 0.9132 0.7683